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Squeezing and Dynamical Symmetries
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A systematic formalism for dealing with nonrelativistic time-dependent quantum
Hamiltonians is presented. The starting point is the Lewis and Riesenfeld invariant
isospectral operator I(x, t). We discuss three examples: the generalized harmonic
oscillator, the conformal oscillator, and the infinite square well with a moving
boundary. We obtain the same results for the generalized harmonic oscillator as
other approaches. In the case of the square well with a moving boundary, an
effective interaction appears which seems to be due to the time dependence of
the boundary. Consistency with the principle of minimal coupling and gauge
invariance is obtained. Some interesting physical applications are suggested.

1. INTRODUCTION

Since the discovery of electromagnetic traps for charged and neutral

particles by W. Paul enormous effort has been dedicated to the construction

of a consistent formalism for time-dependent quantum systems. The reason
is that, as shown by various authors, the Paul trap can be quite accurately

described by a time-dependent harmonic oscillator. More recently, Sutherland

proposed to describe trapped Bose±Einstein condensates by means of a

generalized time-dependent Calogero±Sutherland model which contains har-

monic terms mixed with centrifugal barriers in a pairwise interaction. This

increasingly important experimental area calls for a detailed exact quantum
time-dependent formalism describing accurately the physical properties of

matter trapped at very low temperatures and strong varying magnetic fields.

The main purpose of this paper is to describe and discuss such a formalism.

Given a Hamiltonian operator H(x, t), which we shall be taking for

simplicity in the coordinate representation, Lewis and Riesenfeld(1) showed
that, it is possible to build an invariant operator satisfying
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dI(x, t)

dt
5

- I(x, t)

- t
1

1

i "
[I(x, t), H(x, t)] (1)

I(x, t) 5 I +(x, t) (2)

such that the operator I(x, t) is isospectral, that is, its eigenvalues e n are

constants. The wave functions F n(x, t) of the invariant operator I(x, t)

I(x, t) F n(x, t) 5 e n F n(x, t) (3)

and those of the SchroÈ dinger equation

i "
-
- t

C n(x, t) 5 H(x, t) C n(x, t) (4)

are related through

C n(x, t) 5 ei a n(t) F n(x, t) (5)

The so-called Lewis phases a n(t) can be found (3) as

a n(t) 5 # R

dx F 2
1

" #
t

0

F *n (x, s)H(x, s) F n(x, s) ds G
1 i # R

dx F # t

0

F *n (x, s)
-
- s

F n(x, s) ds G (6)

2. THE GENERALIZED HARMONIC OSCILLATOR

In this section we present the results for the invariant operator, the

eigenfunctions, and the eigenvalues for the generalized harmonic oscillator(4)

whose Hamiltonian is given by:

H(x, t) 5 b 1(t)
p2

2m
1 b 2(t)

v 0

2
[x, p]+ 1 b 3(t)

m

2
v 2

0x
2 (7)

where b 1(t), b 2(t), and b 3(t) are real functions of time. Applying the invariance

law (1) to the Hamiltonian (7), one obtains for I(x, t) the following expression:

I(x, t) 5
1

b 1 H b 2
1 s 2p2 2 m b 1 L s 2[x, p]+ 1 1 1

s 2 1 m2 L 2 s 2 2 x2 J
or

I(x, t) 5 F b 1 s 2 1 p 2
m L
b 1

x 2
2

1
x2

b 1 s 2 G (8)

where the function L (t) is given by
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L (t) 5
s Ç

s
1

b Ç 1

2 b 1

2 v 0 b 2 (9)

The function s (t) is a real function which is a solution of Pinney’ s differen-
tial equation

s È 1 V 2(t) s 5
1

m2 s 3 (10)

where V 2(t) is given by the expression

V 2(t) 5 v 2
0( b 1 b 3 2 b 2

2) 1 v 0
b 2 b Ç 1 2 b Ç 2 b 1

b 1

1
b È 1

2 b 1

2
3

4

b Ç 2
1

b 2
1

(11)

and the initial conditions of (10) are given by

s (0) 5 (m v 0)
2 1/2 (12a)

H d

dt
s (t) J Z t 5 0

5 2
1

2
(m v 0)

2 1/2H d

dt
b 1(t) J Z t 5 0

(12b)

3. THE HARMONIC OSCILLATOR

Let us start with the example of the time-dependent harmonic oscillator
given by the hamiltonian(1,4)

H(t) 5
pÃ2

2m
1

1

2
m V 2(t)xÃ2 (13)

Indeed the time-independent solution of the harmonic oscillator is found in
all textbooks of quantum mechanics. If V (0) 5 v 0, then equation (13) becomes

H 5
pÃ2

2m
1

1

2
m v 2

0xÃ
2 (14)

and the spectrum and the stationary wave function H0 c 0
n 5 e 0

n c 0
n are well

known:

e 0
n 5 " v 0 1 n 1

1

2 2 (15)

c 0
n(x, t) 5 exp F 2 i v 0 1 n 1

1

2 2 t G ( p a2
0)

2 1/4

3 (2nn!) 2 1/2 exp 1 2
x2

2a2
0 2 *n 1 x

a0 2 (16)
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where a2
0 5 " /m v 0 and *n( j ) are the Hermite polynomials. Now let us look

for the solution of the time-dependent SchroÈ dinger equation H(t) c n 5 i " - t c n:

c n(x, s (t)) 5 exp F 2 i 1 n 1
1

2 2 v 0 #
t

ds

m v 0 s 2(s) G
[ p a2

0m v 0 s 2(t)] 2 1/4(2nn!) 2 1/2 exp F 2
x2

2a2
0

1 2 im s (t) s Ç (t)
m v 0 s 2(t) G

*n 1 x

a0

[m v 0 s 2(t)] 2 1/2 2 (17)

provided that s satisfies the classical equation of motion

m s È 1 m V 2(t) s 5
1

m s 3 (18)

This coupled set of equations shows the intimate relationship between the

quantum wave function and the classical motion described by the latter

ordinary nonlinear (but linearizable) differential equation.
One can also write the function c n given by (17) using a change of

variables which makes more apparent its relationship with the squeezing

phenomenon. (4,5) Consider now the same function given by equation (17),

but now written as

c n(x, j (t)) 5 exp F 2 i 1 n 1
1

2 2 v 0 #
t

ReC(t) G
3 (2nn!) 2 1/2 1 p a2

0

ReC(t) 2
2 1/4

3 exp F 2 C(t)
x2

2a2
0 G *n 1 [ReC(t)]1/2 x

a0 2 (19)

Here C(t) is given by

C(t) 5
1 2 j (t)

1 1 j (t)
(20)

and j satisfies the following classical equation of motion:

j Ç 1
i v 0

2 1 V 2(t)

v 2
0

2 1 2 (1 1 j 2) 1 1 V 2(t)

v 2
0

1 1 2 j 5 0 (21)

However, in this second version the squeezing phenomenon appears more
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evident, as j (t) is directly related to the squeezing parameter. There exists a

quite obvious relationship between j (t) and s (t),

j (t) 5
(m v s 2(t) 2 1) 1 im s (t) s Ç (t)
(m v s 2(t) 1 1) 2 im s (t) s Ç (t)

(22)

or conversely

1 2 ) j (t) ) 2
[1 1 j (t)][1 1 j *(t)]

5 [m v 0 s 2(t)] 2 1 (23)

To see the relationship to the squeezed vacuum, consider the operator

defined as

S( b ) ) 0 & 5 exp 1 b
2

a 1 2 2
b *

2
a2 2 ) 0 & (24)

where ) 0 & is the ground state of the time-independent harmonic oscillator

with frequency defined as V (t 5 0) 5 v 0.

If b (t) is written as

b (t) 5 r(t) exp[i w (t)] (25)

we now define

j (t) 5 tanh r(t) exp[i w (t)] (26)

Then S( b ) can be written as

S( b ) 5 exp 1 j (t)

2
a 1 2 2 exp F g (t)

2 1 a+a 1
1

2 2 G exp 1 2
j *(t)

2
a2 2 (27)

where g (t) 5 ln(1 2 ) j (t) ) 2) and the operator S( b ) can be applied not only

to the ) 0 & -ground state but to any excited state ) n & in the form:

S( b ) exp F i

2
h(t) 1 a+a 1

1

2 2 G ) n & (28)

where h(t) is a function of just j (t) and V (t).

4. THE CONFORMAL OSCILLATOR

Another example closely related to the previous one is the wave function

solution of H c n 5 i " - t c n , where now the time-dependent Hamiltonian H is

given by(10)
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H 5
pÃ2

2m
1

1

2
m V 2(t)xÃ2 1

" 2g2

2mxÃ2
(29)

Here g is a dimensionless coupling constant. The solution is

c n(x, s (t)) 5 exp F 2 2i(n 1 r0) v 0 #
t

ds

m v 0 s 2(s) G
3 [a2

0m v 0 s 2(t)] 2 1/4 1 2 G (n 1 1)

G (n 1 2r0) 2
1/2

3 H x

a0

[m v 0 s 2(t)] 2 1/2 J
2r0 2 1/2

3 exp F 2
x2

2a2
0

1 2 im s (t) s Ç (t)
m v 0 s 2(t) G

3 +2r0 2 1
n 1 xs2

a2
0m v 0 s 2(t) 2 (30)

The solution (30) holds if and only if s (t) satisfies the classical equation of

motion (18):

m s È 1 m V 2(t) s 5
1

m s 3 (31)

and +k
n( j ) are the associated Laguerre polynomials which satisfy the differen-

tial equation

j +nk

n ( j ) 1 (k 1 1 2 j )+8k
n ( j ) 1 n+k

n( j ) 5 0 (32)

Recall that k (or 2r0 2 1) is not necessarily an integer in (32), as may be

the case in the present quantum system. The real number r0 is defined as

r0 5
1

2 F 1 1 1 g2 1
1

4 2
1/2 G (33)

One could also calculate the squeezing factors by rewriting the wave function
as been done in the previous section for the time-dependent harmonic

oscillator.

5. THE INVARIANT OPERATOR AND THE CANONICAL
TRANSFORMATIONS

Case I. The Time-Dependent Harmonic Oscillator

One of the main goals of this paper is to show how to generate the

same invariant operators using quantum canonical transformations.(6,7) This
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development leads to a new way to analyze the same problems of time-

dependent Hamiltonians and extend them to a much larger class encompassing

new and interesting physical systems. We shall use particular cases of the
generalized harmonic oscillator to illustrate how this new method works. Let

us first take in equation (7) the following particular choice of initial conditions:

{ b 1(0) 5 1, b 2(0) 5 0, b 3(0) 5 1}. For any time t . 0 these functions take

the values { b 1(t) 5 1, b 2(t) 5 0, b 3(t) 5 b 3(t)}. The Hamiltonian H(x, 0)

takes the form

H1(x) 5
p2

2m
1

1

2
m v 2

0x
2 (34)

One can systematically construct the following operator:

W1(x, t) 5 expH 2
i

4 "
log(m v 0 s 2)[x, p]+ J exp 1 i

m2 v 0 s Ç s
2 "

x2 2 (35)

The details of the rigorous mathematical construction will be given elsewhere.

We shall try to avoid technical details in this paper in order to emphasize

the physical usefulness of the procedure. Using W1(x, t) one can obtain I(x, t)
in a much simpler form:

I(x, t) 5 W1(x, t) 1 p2

2m
1

1

2
m v 2

0x
2 2 W 1

1 (x, t)

5 b 1 s 2 1 p 2
m L
b 1

x 2
2

1
x2

b 1 s 2 (36)

which obviously coincides with the expression as promised. The spectral

problem for I(x, t) can easily be solved in the form

I(x, t) F n(x, t) 5 e n F n(x, t)

where e n 5 " (n 1 1±2 ) and the eigenfunctions F n(x, t) are explicitly given by
the expression (17):

F n(x, t) 5 [22n(n!)2 p " s 2] 2 1/4 exp F (im s s Ç 2 1)
j 2

2 G *n( j )

where

a2
0 5

"
m v 0

and j 5
x

a0

(m v 0 s 2) 2 1/2

and *n( j ) are the Hermite polynomials of variable j . The Lewis phases can
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now be readily calculated with the help of equation (6). After some tedious

calculation we find for a n(t) the exact expression(3)

a n(t) 5 2 1 n 1
1

2 2 #
t

0

ds

m s 2(s)
(37)

The last step is to find the set of orthonormal eigenfunctions solving

the spectral problem for the time dependent SchroÈ dinger equation with Hamil-

tonian H(x, t) given by (7) with { b 1(t) 5 1, b 2(t) 5 0, b 3(t) 5 b 3(t)}. As

we know from the discussion of the previous section and equation (5), these

eigenfunctions are constructed as

C n(x, t) 5 exp F 2 i 1 n 1
1

2 2 #
t

0

ds

m s 2(s) G F n(x, t) (38)

where the function s (t) satisfies Pinney’ s equation:

m s È 1 m V 2(t) s 5
1

m s 3 (39)

with V 2(t) 5 v 2
0 b 3(t).

6. THE INVARIANT OPERATOR AND THE CANONICAL
TRANSFORMATIONS

Case II. The Infinite Square Well With One Moving Boundary

Let us now take in equation (7) the following choice of initial conditions:

{ b 1(0) 5 1, b 2(0) 5 b 3(0) 5 0}. The Hamiltonian H(x, 0): now takes the form

H2(x) 5
p2

2m
(40)

Next we define W2(x, t) like W1(x, t), but this time identifying

L(t) 5 (m v 0)
1/2L0 s (t) (41)

Notice that for the initial conditions for s (t) given by expressions (12a) and

(12b) we obtain a physical set of initial conditions for L(t), namely L(0) 5
L0 and LÇ (0) 5 0. The operator W2(x, t) now reads

W2(x, t) 5 expH 2
i

2 "
log 1 L(t)

L0 2 [x, p]+ J exp 1 imL(t)LÇ (t)

2 " L2
0

x2 2 (42)

Next we set W2(x, t)H2(x)W 1
2 (x, t) 5 I2(x, t) and in so doing we get the

following invariant for this case:
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I2(x, t) 5 W2(x, t)
p2

2m
W 1

2 (x, t) 5
L2(t)

2mL2
0 1 p 2 m

LÇ (t)

L(t)
x 2

2

(43)

with eigenfunctions and eigenvalues given respectively by

F n(x, t) 5 ! 2

L(t)
exp 1 imLÇ (t)

2 " L(t)
x2 2 sin 1 n p x

L(t) 2 (44)

and

e n 5
" 2 p 2n2

2mL2
0

(45)

Note, however, that we still do not know whether this invariant is associated

with a given time-dependent Hamiltonian H*(x, t). Nevertheless our formal-
ism yields unambiguously this Hamiltonian under the obvious assumption

that the operator I2(x, t) is its associated invariant. Formally this is equivalent

to saying that both operators are linked through the following equation:

dI2(x, t)

dt
5

- I2(x, t)

- t
1

1

i "
[I2(x, t), H*(x, t)] (46)

where I2(x, t) is now given by (43):

I2(x, t) 5
L2(t)

2mL2
0 1 p 2 m

LÇ (t)

L(t)
x 2

2

(47)

A simple calculation shows that H*(x, t) takes the following form:

H*(x, t) 5
p2

2m
2

1

2
m

LÈ

L
x2 (48)

The Lewis phase a *n can be easily calculated with expression (6) and F n(x, t)
and H*(x, t) given respectively by (44) and (48). The result is

a *n (t) 5 2
n2 p 2 "

2m #
t

0

ds

L2(s)
(49)

and the wave functions for the hamiltonian (48) take the final form

C n(x, t) 5 ! 2

L(t)
exp 1 2

in2 p 2 "
2m #

t

0

ds

L2(s) 2
3 exp 1 imLÇ (t)

2 " L(t)
x2 2 sin 1 n p x

L(t) 2 (50)
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The conclusion is that the boundary generates an ª effective interactionº due

to the time-dependent boundary conditions. This interaction can only be seen

when the canonical formalism is systematically applied. Therefore even if one
begins with the free-particle Hamiltonian the system presents an interaction

potential just due to the time-dependent character of the boundary conditions.

The implications of this conclusion for a wide variety of physical situations

need not be emphasized (see also Refs. 8 and 9).

7. CANONICAL TRANSFORMATIONS IN THE HAMILTONIAN
AND GAUGE TRANSFORMATIONS

Case I. The Time-Dependent Harmonic Oscillator

Let us now consider the new wave function

C Ãn(x, t) 5 G(x, t) C n(x, t) (51)

The new Hamiltonian HÃ*(t) such that

i " - t C Ãn(x, t) 5 HÃ*(t) C Ãn(x, t) (52)

is obviously related to H*(t) in the well-known form

HÃ*(t) 5 G(x, t)H*(x, t)G+(x, t) 2 i " G(x, t)GÇ +(x, t) (53)

The gauge transformation for the canonical operators p and x in the Hamilto-

nian HÃ*(t) takes the form

p ® p 2
- Q(x, t)

- x
(54a)

V(x, t) ® V(x, t) 2
- Q(x, t)

- t
(54b)

The use of the canonical formalism in time-dependent quantum systems not
only leads to an efficient way to find the exact time evolution operators, but

is also linked to the idea of minimal coupling lying behind the apparent

gauge principle we have just described. Let us now apply these ideas to the

time-dependent harmonic oscillator whose wave function is given by (17):

C n(x, s (t)) 5 exp F 2 i 1 n 1
1

2 2 v 0 #
t ds

m v 0 s 2(s) G
3 [ p a2

0m v 0 s 2(t)] 2 1/4(2nn!) 2 1/2 exp F 2
x2

2a2
0

1 2 im s (t) s Ç (t)
m v 0 s 2(t) G
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3 *n 1 x

a0

[m v 0 s 2(t)] 2 1/2 2 (55)

Let us now define C Ã(x, t) according to (51) as

C Ãn(x, t) 5 G(x, t) C n(x, t)

5 exp F i

"
Q(x, t) G 5 exp F 2

i

"
m s Ç (t)
2 s (t)

x2 G (56)

Applying (53) to the Hamiltonian (13) and using also the constraint (18),
we obtain

HÃ*(t) 5
1

2m F p 1 m
s Ç (t)
s (t)

x G 2

2
m

2 F s Ç (t)
s (t)

1
1

m s 2 G F s Ç (t)
s (t)

2
1

m s 2 G x2 (57)

This transformed Hamiltonian can also be obtained with the help of the gauge

transformation (54a), (54b). Its wave functions are given by

C Ãn(x, s (t)) 5 exp F 2 i 1 n 1
1

2 2 v 0 #
t ds

m v 0 s 2(s) G
3 [ p a2

0m v 0 s 2(t)] 2 1/4(2nn!) 2 1/2 expH 2
x2

2a2
0

[m v 0 s 2(t)] 2 1 J
3 *n 1 x

a0

[m v 0 s 2(t)] 2 1/2 2 (58)

The wave functions (58) look exactly like those of the stationary harmonic

oscillator, but rescaling the time-independent length in the form a2
0 ®

a2
0m v 0 s 2(t), where now s (t) satisfies

m s È 1 m V 2(t) s 5
1

m s 3 (59)

8. CANONICAL TRANSFORMATIONS IN THE HAMILTONIAN
AND GAUGE TRANSFORMATIONS

Case II. The Infinite Square Well with One Moving Boundary

Let us now consider the Hamiltonian and wave function of the infinite

square well with a moving boundary described in a previous section and

given respectively by the expressions
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H*(x, t) 5
p2

2m
2

1

2
m

LÈ

L
x2 (60)

C n(x, t) 5 ! 2

L(t)
exp 1 2

in2 p 2 "
2m #

t

0

ds

L2(s) 2
3 exp 1 imLÇ (t)

2 " L(t)
x2 2 sin 1 n p x

L(t) 2 (61)

We now look for a new wave function C Ãn(x, t) related to C n(x, t) through

the relationship C Ãn(x, t) 5 G(x, t) C n(x, t), where G(x, t) is given by

G(x, t) 5 exp 1 2
im

2 "
LÇ (t)

L(t)
x2 2 (62)

Indeed, this canonical transformation is a quantum gauge transformation of

the form

G(x, t) 5 exp F i

"
Q(x, t) G (63)

whose unitary generator is given by

Q(x, t) 5 2
1

2
m

LÇ (t)

L(t)
x2 (64)

Applying now

HÃ*(t) 5 G(x, t)H*(x, t)G+(x, t) 2 i " G(x, t)GÇ +(x, t) (65)

one can obtain the new Hamiltonian HÃ*(t) starting with the expressions for

H*(t) and G(x, t) given by (60) and (62). The final result of this calculation
yields the following expression for HÃ*(t):

HÃ*(t) 5
1

2m 1 p 1 m
LÇ (t)

L(t)
x 2

2

2
1

2
m

LÇ 2(t)

L2(t)
x2 (66)

with wave functions C Ãn(x, t) of the form

C Ãn(x, t) 5 ! 2

L(t)
exp 1 2

in2 p 2 "
2m #

t

0

ds

L2(s) 2 sin 1 n p x

L(t) 2 (67)

The physical interpretation of these equivalent quantum systems described

alternatively by the set of Hamiltonian and wave function (60)±(61) or

(66)±(67), representing the quantum behavior of a particle confined in a one-

dimensional impenetrable box, requires further discussion. The time depen-
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dence comes from the motion of the boundary. However, this motion cannot

be described as a force included in the Hamiltonian as it is due to some

external action on the wall from outside the box. There the wave function
of the particle vanishes everywhere and no physical operator representing a

force acting on the exterior of the well can be included in the Hamiltonian

in a rigorous way, as the Hamiltonian deals with the physical description of

the particle inside the box. If we call V (t) the external frequency acting on

the wall from outside, its action must cancel the motion of L(t) as seen from

inside, in the form

LÈ (t) 1 V 2(t)L(t) 5 0 (68)

which also represent a sort of classical equation of motion for the motion of

the wall as in the previous examples.

Turning our attention to the problem of squeezing, it is worth noting

that the invariant operator can be found by applying a squeezing operator of
the form S( b ) to the free-particle Hamiltonian. One can also find the exact

fluctuation spectrum and the degree of squeezing. The nontrivial observation

is, however, the form of the wave function arising from a classical time-

dependent constraint. After applying the squeezing operator, one sees that

instead of the purely free particle Hamiltonian, one is actually solving the
effective Hamiltonian given by the expression

H 5
pÃ2

2m
2

1

2
m

LÈ (t)

L(t)
xÃ2 (69)

The fluctuations in the measurement of position and momentum can also be

used to give an idea on the squeezing factor, which would now be coming
just from the motion of the walls, as already discussed:

( D x)2 5
L2(t)

12 1 1 2
6

n2 p 2 2 (70a)

( D p)2 5
" 2 p 2n2

L2(t)
1

m2LÇ 2(t)

12 1 1 2
6

n2 p 2 2 (70b)

9. CONCLUSIONS

A systematic formalism for dealing with the dynamics of nonrelativistic

time-dependent quantum Hamiltonians has been presented. We have checked
the formalism using various examples. In the case of the generalized time-

dependent harmonic oscillator, we found all information including quantum

phases by systematically applying the formalism. New information appears

in the case of the time-dependent potential well of infinite height.
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The boundary in motion generates a nontrivial interaction which mani-

fests itself as an effective potential which depends in turn on the classical

motion of the wall. Applications to physical systems confined in nonstationary
boxes or bags, conformal oscillators with external random forces,(10,12) Fermi

oscillators, various aspects of chaos in quantum physics,(11±13) and recent

proposals for the rigorous description of Bose±Einstein condensation (14) are

areas which could benefit from the results discussed. A preliminary announce-

ment of the results discussed in this paper has appeared.(15) A similar approach

with different emphasis on the construction of the canonical invariant opera-
tors has also recently been discussed by Lejarreta.(16)

A final point should be made with regard to the realistic nonlocal

description of the physical world (for an interesting account of this subject

see the review in ref. 2). If the classical constraints were of purely nonlinear

nature, the wave function would still be a solution of the linear SchroÈ dinger

equation, but with a ª pilotº following these nonlinear classical rules. The
ª nonlinearityº of quantum mechanics would appear in an interesting way as

a realistic nonlocal description of nature.
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